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The impact of the transition from the quark-gluon plasma to the hadronic 
phase on the baryon density fluctuations and primordial nucleosynthesis in the 
Early Universe is being actively investigated [l-4]. Quantitative description of the 
hadronic bubble formation, their percolation and the squeeze of the plasma droplets 
rely on data originating from quantum chromodynamics. The progress in the lattice 
measurements of the transition temperature and the latent heat is continuous and 
at present a rather weakly first order transition is suggested to take place [5,6]. 

The average size, the rate of production etc. of hadronic bubbles are sensitive 
to a third quantity, the surface energy associated with the interface between coex- 
isting confined and deconfmed regions at the transition temperature. Very recently 
attempts have been made for numerical determination of this quantity directly in 
QCD [7,8]. The problem consists of calculating the excess free energy of the gluonic 
medium at T, resulting from the imposition of two parallel, infinitely distant walls 
of temperature T = m and T = 0, respectively. The exploratory Monte Carlo 
study [a] does not correspond yet to this ideal setup. 

In this note we propose as an approximate realisation of the above strategy the 
evaluation of the surface energy in the framework of the mean field approximation 
to the order parameter (Polyakov-loop) theory. The strategy is to construct and 
quantitatively characterize the so called order parameter profile [9]. This approxi- 
mation is widely used in various fields of statistical physics e.g. nucleation theory, 
wetting etc. The explicit form of the effective theory of Polyakov-loops we shall use 
is valid at strong gauge coupling only, still we believe that predictions on combina- 
tions of observables which are independent of the lattice spacing might be of more 
general validity as an order of magnitude estimate. (This expectation is based on 
the experience gamed with strong coupling spectrum calculations [lo]). 

The derivation of the effective lattice theory of Polyakov-loops should be con- 
sidered as a constrained integration in the partition function of the full, finite tem- 
perature gauge system. Were the integrations performed exactly, the “integrated 
out” contributions to the free energy kept, then no thermodynamic information 
should be lost. Furthermore the pieces independent of the Polyakov loop variables 
cannot produce the necessary singularities, therefore the latent heat, the order pa- 
rameter discontinuity etc. should not depend on them. 

To the present date, the integration has been performed only in the strong 
coupling regime [ll,lZ]: 

S eff = Je&(TT u. TT u.‘+. + c.c.), (1) 
o,e 

where 

J -A- =ff = sga 
t ) 

(2) 

(g* is the gauge coupling >> 1, T the temperature and a the lattice constant in 
the temperature direction). We consider the pure SU(3) gluon theory. Closer to 
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the continuum limit (ga --t 0,a + 0) more complicated terms do appear in (l), 
with further J-type couplings depending on g2 and T nontrivially. For individual 
physical quantities there is no hope to see the continuum behavior. The best, the 
predictions for a-independent ratios can be taken seriously. 

Let us denote the direction orthogonal to the boundary walls as the z-axis. The 
physical situation suggests to choose an z-dependent mean field n(z) to minimize 
the approximate free energy per unit area given by the expression: 

Fr,.r.t-. = -cln/ dUexp{JM(z)(Tr V. + Tr V,+)} + J~m(z)M(z), (3) 
z I! 

where M(z) = 4m(z) + m(z + 1) + m(z - 1) and dU is the Haar-measure of the 
SU(3)- invariant integration. One haz to solve the selfconsistent equation: 

subject to the boundary conditions 

m(z -* -00) = 0, m(z --a 00) = mo. (5) 

The parameter ma is selected by the requirement of the existence of a soliton solu- 
tion to eq.(4), smoothly extrapolating between the ordered and disordered phases 
(see below). Eq.(4) is understood as a local relationship between M and m, or 
introducing the notation 

m(z + 1) = m(z) + i(z), 

M(z) = 64s) + i(z) - i(z - 1) E am(z) + I(z) (6) 

a relation between I and m. One realizes that I(z) approximates bm/d+*, there- 
fore eq.(4) is actually the discrete version of a second order nonlinear differential 
equation. (For instance, in the 3-state Potts model this equation can be written 
in fully explicit form. With this identification the smoothness of the interpolation 
between the prescribed boundary values is naturally expressed by the boundary 
conditions: 

dm - 
dr -+ 0, bm+O 

z ’ 
if 121 -4 00. (74 

On the lattice these conditions are equivalent to: 

J 

mo 
I(m)dm = 0, 

0 

I(=) --) 0, if Ial * 00. 
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What are the consequences of (7b) on the parameters ms and J? This question 
is answered starting from eq.(4), whose explicit form is: 

$ -& 1x1 J dU exp{JM(Tr u + Tr v+)) = m. (8) 

Integration of es.(a) with respect to M on the interval (O,M(mc)) results in the 
following equality: 

ln 
I 

dUexp{JM(mo)(TT U + Tr U+)} - Jmc,M(mo)- 

mo 
-moqmo) - 

J 
dm I(m) = 0. (9) 

0 

In view of (7b) the last two terms on the left hand side of (9) vanish. In this 
way eqs.(9),(8) me just the equations which determine the transition point J, and 
the order parameter discontinuity (me) in the conventional treatment of first order 
transitions. 

The meaning of this result is that eq.(8) has a smoothly interpolating solution 
only at J = .7. with ms = m,. Clearly, the physical statement of phase coexistence 
is equivalent to the existence of a solitonic order parameter profile. 

The numerical construction of the kink solution starts by solving eqs.(7b),(8), 
(9) with m(z) s m,, which reproduces the well-known .7. = 0.134270 and m. = 
1.45786 data [9]. Using these values in (a), m(r+l) is calculated from the knowledge 
of m(z - 1) and m(z). The “initial” values were chosen to be m(O) = O,m(l) z 
o(lO-lo). Each step of calculating the soliton in a new point involves two integrals 
to be done numerically. The accumulation of numerical errors might spoil the 
soliton.(The inaccurately calculated m(x) f unction would reach nc = mc with 
nonzero derivative, making the kink unstable). Therefore .7=, m, and the integrals 
require careful evaluation. (In case of the 3-state Potts model, the homogeneous 
mean field problem can be solved analytically and the sensitivity to deviations from 
.7. and m. be studied in a systematic way). The kink constructed numerically is 
displayed in Fig.1. 

The soliton can be characterized by two physical quantity. Its half-width pro- 
vides an estimate of the order parameter correlation length at the transition. From 
Fig.1 one reads off e RS 2 in lattice units. Substituting m(z) into eq.(3) the surface 
energy in lattice units is 

u = 0.106. (10) 

A combination which is independent of the actual lattice spacing can be formed as 

up 2: 0.848. (11) 

This is the main message of our note, strictly speaking valid in the strong coupling 
regime. 



However we cannot resist to conjecture a value of o in physical units extending 
the validity of (11) to weaker couplings. For this we use data from the most recent 
Monte Carlo investigations [5,6]. In Ref. [5] a detailed analysis of the order param- 
eter correlation length was given. For “temporal size” Nt = 4 two different spatial 
sizes led to E x 9 and < x 13, respectively at the transition point. Assuming that 
this system (,& = 5.69) already obeys continuum physics one deduces 

&,,,,.,Tce 2.75 zk 0.5. 

Combining this with our result (11) one gets 

(12) 

(13) 

Our result for cphy,/T: is almost two orders of magnitude smaller, than that of 
Ref. [8]. We consider this shift towards smaller coefficients physically reasonable as 
one deals with a weskly first order transition (in continuous transitions u(T.) = 0). 
Assuming T, = 100MeV the range of ~rar. from (13) practically coincides with 
the values considered by Fuller et al. [3] for astrophysical applications. For T. = 
15OMeV the values from (13) are at the higher end of the range considered in [3]. 
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Figure Caption 

Fig. 1 The order parameter protie from the effective SU(3) Polyakov-loop 
theory at the transition point. The correlation length t can be read off directly. 
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